Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 197: 115684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925990

RESUMO

One of the world's largest smelters has been operating in South Australia since 1889, affecting environment and human health. Here we quantified the magnitude of Pb, Zn and Cd emissions from the smelter sequestered in the soil of an adjacent 110 km2Posidonia australis seagrass meadows. Seagrass core records show that the smelter contaminated the entire area with decreasing sequestration with increasing distance from contamination points. The soil accumulated ~1300 t of Pb, ~3450 t of Zn, and ~ 90 t of Cd since 1889, and sequestered the equivalent of ~20 % of Pb, and ~50 % of Zn and Cd cumulative smelter emissions since 1999, showing that seagrass can be significant, long-term sinks of metal pollution in highly contaminated environments. Conservation efforts should prioritize these seagrass meadows to avoid the potential release of pollutants from their soils following habitat loss, which could turn seagrasses from a sink to a source of pollution.


Assuntos
Poluentes do Solo , Solo , Humanos , Cádmio/análise , Chumbo , Monitoramento Ambiental , Ecossistema , Poluentes do Solo/análise
2.
Nat Commun ; 10(1): 1106, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846688

RESUMO

Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2 sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8 TgCinorg yr-1 and 15-62 TgCinorg yr-1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3 burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks.

3.
Sci Total Environ ; 649: 1381-1392, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308907

RESUMO

The upper Spencer Gulf in South Australia hosts the world's largest single stream Pb-Zn smelter, which has caused environmental and health issues related to elevated metal concentrations in the surrounding environment. The area also has extensive seagrass meadows, occupying >4000 km2. We reconstructed the fluxes of heavy metals over the last ~3000 years through a multi-parameter study of the soil archives formed by the seagrass Posidonia australis. Pb, Zn and Cd concentrations increased up to 9-fold following the onset of smelter operations in the 1880s, and the stable Pb isotopic signatures confirmed the smelter has been the main source of lead pollution in the seagrass soils until present. Preliminary estimates suggest that over the past 15 years seagrass meadows within 70 km2 of the smelter accumulated ~7-15% of the smelter emissions in their soils. Here we demonstrate that seagrass meadows act as pollution filters and sinks while their soils provide a record of environmental conditions, allowing baseline conditions to be identified and revealing the time-course of environmental change.

4.
Sci Rep ; 7: 44071, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281574

RESUMO

Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

5.
Sci Rep ; 6: 23193, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26979407

RESUMO

Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m(-2) in the upper 50 cm-thick deposits at a rate of 34 g Corg m(-2) yr(-1). The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m(-2) in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.


Assuntos
Carbonato de Cálcio/análise , Pradaria , Recreação , Conservação dos Recursos Naturais , Sedimentos Geológicos/análise , Humanos , Chumbo/análise , Compostos Orgânicos/análise , Austrália Ocidental
6.
Water Sci Technol ; 44(11-12): 85-92, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11804162

RESUMO

A constructed wetland design, consisting of 16 repeating cells was proposed for Henley Brook (Perth, Western Australia) to optimise the removal of FRP from urban stormwater. Three replicate experimental ponds (15 x 5 m), were constructed to represent at a 1:1 scale a single cell from this design. Three 5 m zones of each pond were sampled: shallow (0.3 m) vegetated (Schoenoplectus validus) inflow and outflow zones and a deeper (1 m), V-shaped central zone. In 1998/99, inflows and outflow waters were intensively sampled and analysed for FRP and Total P. In addition, all major pools of P (plants, sediment) within the ponds, and important P removal processes (benthic flux, uptake by biofilm and S. validus) were quantified. A removal efficiency of 5% (1998) and 10% (1999) was obtained for FRP. Initial uptake was mainly in plant biomass, although the sediment became an increasingly important sink. Benthic flux experiments showed that anoxia did not cause release of P from sediments, indicating that most of the P was bound as apatite rather than associated with Fe or Mn. The highly coloured waters were believed responsible for the very low biofilm biomass recorded (<1 g x m(-2)). We have demonstrated that constructed wetlands can be effective for removing FRP immediately after construction, although their long-term removal capacity needs further research.


Assuntos
Ecossistema , Fósforo/metabolismo , Poluição da Água/prevenção & controle , Biodegradação Ambiental , Biofilmes , Biomassa , Filtração , Sedimentos Geológicos , Hipóxia , Plantas , Chuva , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...